语言是现实生活中最主要的信息交流方式。语言模型是语言研究中的一项基础工作,能够提供有效的词表征以及词序列的概率化表示,可以应用于语音识别、机器翻译、手写体识别和句法分析等相关研究。目前,语言模型在英语、汉语和日语等语料相对充足语言领域已经取得了比较理想的效果。而针对藏语的相关研究仍处在初级阶段,由于藏语语料资源的匮乏和研究人员的稀少,严重制约了藏语语言模型的研究发展。在此背景下,本文从藏语自身的语言特点着手:一方面构建了藏语语料库,以验证本文研究结果的合理性;另一方面是从藏语形态结构出发,解决在有限的语料中获取更加有效的信息来补充资源缺乏的问题。 藏语作为资源匮乏的语言之一,目前没有公开的、标准的音频和文本数据资源。根据藏语拉萨方言的特点和藏语文本的特殊性,本文考虑了音素平衡以及文本域问题,构建了藏语的音频和文本语料库。基于藏语句子中一些虚词接续错误和低频词问题,本文重点关注了藏语中后缀对虚词的影响,以及形态动词对低频词的影响。 在上述基础上,首先,本文提出了藏语静态形态结构关系的语言模型。与其他语言不同,藏语中特有的静态形态结构关系(即后缀对虚词接续关系)会严重影响藏语句子的语义理解。具体地,除了字本身的信息之外,字的后缀信息能够使其更加准确接续正确的虚词。因此,本文将静态形态结构融入到字的信息中,以纠正句子中一些语法错误,从而使句子语义能够准确表达。其次,本文提出了藏语动态形态结构关系的语言模型。我们发现在语料中有一些动态形态结构关系(即藏语中的形态屈折变化词),这类词比较特殊且重要,对句子的语义会产生重要影响,尤其是在语音识别中的同音字,预测错误的可能性较大。由于词类中候选词越多,其对应的候选词权重越低,被选中的概率就越低。为此,我们对藏语中的形态动词进行加权,使其不但能够被分配到更高的词类中,而且能更加准确地表示句子语义。最后,本文提出了融合静态和动态形态结构的藏语语言模型。经统计发现,静态形态结构关系可以纠正句子中语法错误的问题,而动态形态结构可以使句子中形态动词的权重发生变化,这两种结构具有互补的关系,能够进一步增强对藏语句子语义的理解。我们有效融合了静态和动态形态结构,不仅考虑到后缀对虚词的影响,而且对形态动词进行了加权以增强句子的语义理解,比仅考虑单个特性的模型在性能上有所提升。 综上所述,通过构建藏语语料库以及对其分析,我们发现语法和低频词问题。进而将后缀对虚词的语法问题以及形态动词对低频词的影响应用于藏语语言模型的研究中,可以有效提升藏语句子的识别和理解能力。除了语音识别,本文的工作还可被应用到手写体识别、机器翻译和句法分析等藏语自然语言处理的不同任务上,希望该工作能为藏语信息处理研究做出一点绵薄之力。